Weakly Supervised Saliency Detection with A Category-Driven Map Generator

نویسندگان

  • Kuang-Jui Hsu
  • Yen-Yu Lin
  • Yung-Yu Chuang
چکیده

Top-down saliency detection aims to highlight the regions of a specific object category, and typically relies on pixel-wise annotated training data. In this paper, we address the high cost of collecting such training data by presenting a weakly supervised approach to object saliency detection, where only image-level labels, indicating the presence or absence of a target object in an image, are available. The proposed framework is composed of two deep modules, an image-level classifier and a pixel-level map generator. While the former distinguishes images with objects of interest from the rest, the latter is learned to generate saliency maps so that the training images masked by the maps can be better predicted by the former. In addition to the top-down guidance from class labels, the map generator is derived by also referring to other image information, including the background prior, area balance and spatial consensus. This information greatly regularizes the training process and reduces the risk of overfitting, especially when learning deep models with few training data. In the experiments, we show that our method gets superior results, and even outperforms many strongly supervised methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised Top-down Salient Object Detection

Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabi...

متن کامل

Weakly Supervised Salient Object Detection Using Image Labels

Deep learning based salient object detection has recently achieved great success with its performance greatly outperforms any other unsupervised methods. However, annotating per-pixel saliency masks is a tedious and inefficient procedure. In this paper, we note that superior salient object detection can be obtained by iteratively mining and correcting the labeling ambiguity on saliency maps fro...

متن کامل

Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information, and the resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised ...

متن کامل

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location information is explored both explicitly and implic...

متن کامل

PhD. Depth Exam From attention to object proposals

The problem of finding locations where people look at first in images, known as saliency detection, spans decades of research from multiple disciplines including psychology, neuroscience, and computer vision. Because of the complexity of the problem it can hardly be considered as solved. Here, we give an overview of the methods for saliency detection starting from early biologically-plausible m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017